

Class: XII
Date: 14.11.2021

INDIAN SCHOOL AL WADI AL KABIR

PRACTICE EXAM (2021-2022)-Term -I
Sub: APPLIED MATHEMATICS (241) Max Marks: 40
Time: 90 minutes

General Instructions:

1. This question paper contains two parts A, B and C. Each part is compulsory.
2. Section A has 20 questions, attempt any 16 out of 20 .
3. Section B has 20 questions, attempt any 16 out of 20 .
4. Section C has 10 questions, attempt any 8 out of 10 .
5. There is no internal choice in any question and no negative marking.
6. All questions carry equal marks.

Section A

In this section, attempt any 16 questions out of Questions 1-20. Each Question is of 1-mark weightage

Q1.	A man can row at $10 \mathrm{~km} / \mathrm{hr}$ in still water. If the river is running at $2 \mathrm{~km} / \mathrm{hr}$, it takes him 75 minutes to row to a place and back. How far is the place								
	A	4.5 km	B	5 km	C	6 km	D	8km	
Q2.	A can run 22.5 meter while B runs 25 meter in the same time. In a 1000 m race, by how much distance B beats A?								
	A	200m	B	120m	C	40m	D		100m
Q3.	A pipe can fill a tank in 40 minutes. Due to a leakage in the bottom it took 60 minutes to fill the tank. How much time will it take for the leakage to empty the full tank?								
	A	30minutes	B	1 hr	C	2 hrs	D		4hrs
Q4.	The last two digits of the product $2103 \times 3125 \times 45123$								
	A	23	B	25	C	75	D	45	

Q12.	The mean of a distribution is 60 with standard deviation 5. Assuming that the distribution is normal, what percentage of items be between 65 and 75 ? Given: $P(Z<1)=0.8413, \quad P(Z<2)=0.9772, P(Z<3)=0.9986$							
	A	19.73	B	15.73	C	20.74	D	12.14
Q13.	Ten Oranges are drawn successively with replacement from a lot containing 10% defective oranges. Find the probability that there is at least one defective orange.							
	A	$1-\frac{9^{11}}{10^{11}}$	B	$1-\frac{9^{10}}{10^{10}}$	C	$1-\frac{9^{10}}{10^{10}}$	D	$1-\frac{9^{9}}{10^{9}}$
Q14.	If the proportion of defective in a bulk is 4% then the probability of 2 defective in a sample of 10 . (Given: $e^{-0.4}=0.6703$)							
	A	0.0536	B	0.0636	C	0.0736	D	0.0836
Q15.	Find the mean number of heads in three tosses of a fair coin							
	A	1	B	1.5		2	D	$\frac{1}{2}$
Q16.	If the mean and variance of a binomial distribution are $\frac{4}{3}$ and $\frac{8}{9}$ respectively, then $\mathrm{P}(\mathrm{x}=1)$							
	A	$\frac{32}{27}$	B	$\frac{8}{27}$	C	$\frac{32}{81}$	D	$\frac{8}{81}$
Q17.	The variance of a Poisson distribution is 2, then $\mathrm{P}(\mathrm{X}=2)$							
	A	$\frac{2}{e^{2}}$	B	$\frac{4}{e^{2}}$	C	$2 e^{2}$	D	$4 e^{2}$
Q18.	Which index number is called as ideal index number?							
	A	Laspeyres index	B	Paasche index	C	Fisher's index	D	Marshall-Edgeworth's index
Q19.	Given that $\Sigma p_{0} q_{0}=6600, \Sigma p_{0} q_{1}=8255, \Sigma p_{1} q_{0}=9550, \Sigma p_{1} q_{1}=12010$, where subscripts 0 and 1 are used for base year and current year respectively. The Paashe's index number is:							
	A	144.70	B	145.49	C	143.09	D	125.76

Q25.	Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of $E(X)$ is							
	A	$\frac{2}{13}$	B	$\frac{5}{13}$	C	$\frac{1}{13}$	D	$\frac{37}{221}$
Q26.	The total area under the normal distributed curve above the base line i.e. $\int_{-\infty}^{\infty} f(x) d x=$?							
	A	0	B	∞	C	0.5	D	1
Q27.	How many times must we should toss a fair coin so that the probability of getting at least one head is more than 90% ?							
	A	2	B	3	C	4	D	5
Q28.	A, B and C enter into a partnership. B contributes one third of the capital while A contributes as much as B and C together contribute. The ratio of their capital is							
	A	1:2:3	B	2:3:1	C	3:2:1	D	3:1:2
Q29.	Akshay started a business by investing ₹ 40000 After 4 months Ashwin joined his business and invested ₹ 50000 The share of Ashwin in the profit if they earn ₹ 220000 as profit in the entire year							
	A	$₹ 100000$	B	$₹ 110000$	C	$₹ 120000$	D	₹ 90000
Q30.	The random variable X has a probability distribution $\mathrm{P}(\mathrm{X})$ of the following form, where k is some number:$P\left(X=x_{i}\right)=\left\{\begin{array}{c} 0.1, \quad \text { if } x=0 \\ k x, \quad \text { if } x=1 \text { or } 2 \quad \text { or } 4 \\ k(5-x), \\ \text { if } x=3 \text { or } 4 \end{array} \text { Determine the value of } \mathrm{k}\right.$							
	A	$\frac{3}{20}$	B	$\frac{3}{10}$	C	$\frac{2}{5}$	D	$\frac{11}{20}$

Q31.	The length of a rectangle is twice the breadth. If the perimeter of the rectangle is at least 120 cm , then								
		breadth $<20 \mathrm{~cm}$	B	breadth ≤ 20		C breadth >20		D	breadth $\geq 20 \mathrm{~cm}$
Q32.	[llll $\left.\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2\end{array}\right]\left[\begin{array}{c}x \\ 1 \\ -2\end{array}\right]=\mathbf{0}$ Then $\mathrm{x}=$ -								
	A	$\frac{1}{2}$	B	$-\frac{1}{2}$	C	2	D		-2
Q33.	The points at which the tangent to the curve $y=x^{3}+5$ is perpendicular to the line $x+3 y=2$ are								
	A	$(1,6)$ and (-1, 4)	B	$(1,6)$ and $(1,4)$	C	$(6,1)$ and $(4,1)$	D		$(6,1)$ and (-1, 4)
Q34.	The second order derivative of $x .(\log x)$ with respect to x .								
	A	$\frac{x}{1+x}$	B	$\frac{1+x}{x}$	C	$\frac{\log x}{x}$	D		$1+\log x$
Q35.	The demand function of a toy is $p(x)=25-\frac{x}{3}$ and its total cost function is $c(x)=100+3 x$. For maximum profit, the value of x is								
	A	22	B	25	C	100	D		33
Q36.	During a certain period, the cost of living index number goes from 125 to 150 and the salary of a worker is also raised from ₹ 20000 to ₹ 23700 . Then which of the following is true?								
	A	Worker actually loses ₹ 200	B	Worker actually gains ₹ 200	C	Worker actually loses ₹ 700	D		ker actually gains ₹

Q37.	The wholesale price index of rice in 2020 compared to 2015 is 140 . If the cost of rice was ₹ 25 per kg in 2015, calculate the cost in 2020.							
	A	₹ 28	B	₹ 35	C	$₹ 40$	D	₹ 30
Q38.	If Laspeyre's index number $=160$, Paasche's index number $=90$ then Fisher's index number is							
	A	90	B	120	C	140	D	160
Q39.	Price index by Marshall Edgeworth method takes							
	A	q_{0} as weights	B	q_{1} as weights	C	$q_{0} . q_{1}$ as weights	D	$\frac{q_{0}+q_{1}}{2}$ as weights
Q40.	If A is a square matrix of order 3 and $\|A\|=-5$, then \mid A $\operatorname{adj} A \mid=$							
	A	-5	B	25	C	-125	D	625
SECTION - C In this section, attempt any 8 questions out 10 Questions. Each question is of 1-mark weightage. (Questions 46-50 are based on a Case-Study).								
Q41.	The CP of type 1 rice is ₹ 60 per Kg and that of type 2 is ₹ 80 per Kg If both are mixed in the ratio 2:3 then the price per Kg of the mixed rice is $₹$ \qquad							
	A	72	B	75	C	65	D	70
Q42.	If $0<x<1$, which of the following is the greatest?							
	A	x	B	x^{2}	C	$\frac{1}{x}$	D	$\frac{1}{x^{2}}$

	CASE STUDY BASED QUESTION							
	An industry produces only two goods x and y ． The two commodities serve as intermediate input in each other＇s productions． 0.1 unit of x and 0.55 unit of y are needed to produce a unit of x ．Whereas 0.4 unit of X and 0.2 unit of y are needed to produce a unit of Y．For final consumption 240 units of X and 140 units of Yare needed． Based on the above information answer the following questions：							
Q46．	The technology matrix A is							
	A	$\left(\begin{array}{cc}0.1 & 0.4 \\ 0.55 & 0.2\end{array}\right)$	B	$\left(\begin{array}{cc}0.1 & 0.2 \\ 0.55 & 0.4\end{array}\right)$	C	$\left(\begin{array}{cc}0.2 & 0.4 \\ 0.55 & 0.1\end{array}\right)$	D	$\left(\begin{array}{cc}0.1 & 0.55 \\ 0.4 & 0.2\end{array}\right)$
Q47．	The demand Matrix D is							
	A	$\binom{140}{240}$	B	$\binom{240}{140}$	C	$\binom{100}{140}$	D	$\binom{240}{100}$
Q48．	If I represents the identity matrix of order 2 ，then $I-A$							
	A	$\left(\begin{array}{cc}0.9 & 0.8 \\ 0.45 & 0.6\end{array}\right)$	B	$\left(\begin{array}{cc}0.8 & -0.4 \\ -0.55 & 0.9\end{array}\right)$	C	$\left(\begin{array}{cc}0.9 & -0.4 \\ -0.55 & 0.8\end{array}\right)$	D	$\left(\begin{array}{cc}0.9 & -0.55 \\ -0.4 & 0.8\end{array}\right)$
Q49．	$(I-A)^{-1}=$							
	A	$2\left(\begin{array}{cc}0.8 & 0.4 \\ 0.55 & 0.9\end{array}\right)$	B	$2\left(\begin{array}{cc}0.9 & 0.4 \\ 0.55 & 0.8\end{array}\right)$	C	$\frac{1}{2}\left(\begin{array}{cc}0.8 & -0.4 \\ -0.55 & 0.9\end{array}\right)$	D	$\frac{1}{2}\left(\begin{array}{cc}0.9 & 0.55 \\ 0.4 & 0.8\end{array}\right)$
Q50．	The gross output of two commodities are							
	A	$\begin{array}{r} X=596 \\ Y=416 \end{array}$	B	$\begin{array}{r} X=470 \\ Y=510 \end{array}$	C	$\begin{gathered} X=496 \\ Y=416 \end{gathered}$	D	$X=496, Y=516$

